Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.740
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612810

RESUMO

Light is a key environmental component influencing many biological processes, particularly in prokaryotes such as archaea and bacteria. Light control techniques have revolutionized precise manipulation at molecular and cellular levels in recent years. Bacteria, with adaptability and genetic tractability, are promising candidates for light control studies. This review investigates the mechanisms underlying light activation in bacteria and discusses recent advancements focusing on light control methods and techniques for controlling bacteria. We delve into the mechanisms by which bacteria sense and transduce light signals, including engineered photoreceptors and light-sensitive actuators, and various strategies employed to modulate gene expression, protein function, and bacterial motility. Furthermore, we highlight recent developments in light-integrated methods of controlling microbial responses, such as upconversion nanoparticles and optical tweezers, which can enhance the spatial and temporal control of bacteria and open new horizons for biomedical applications.


Assuntos
Nanopartículas , Células Procarióticas , Archaea/genética , Pinças Ópticas
2.
Environ Geochem Health ; 46(5): 167, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592380

RESUMO

Microorganisms are crucial elements of terrestrial ecosystems, which play significant roles in improving soil physicochemical properties, providing plant growth nutrients, degrading toxic and harmful chemicals, and biogeochemical cycling. Variations in the types and quantities of root exudates among different plants greatly alter soil physicochemical properties and result in variations in the diversity, structure, and function of soil microorganisms. Not much is understood about the differences of soil fungi and archaea communities for different plant communities in coastal wetlands, and their response mechanisms to environmental changes. In this study, fungal and archaea communities in soils of Suaeda salsa, Phragmites australis, and Spartina alterniflora in the intertidal habitat of coastal wetlands were selected for research. Soil fungi and archaea were analyzed for diversity, community structure, and function using high throughput ITS and 16S rRNA gene sequencing. The study revealed significant differences in fungi and archaea's diversity and community structure in the rhizosphere soil of three plant communities. At the same time, there is no significant difference in the functional groups. SOM, TP, AP, MC, EC and SOM, TN, TP, AP, MC, EC are the primary environmental determinants affecting changes in soil fungal and archaeal communities, respectively. Variations in the diversity, community structure, and ecological functions of fungi and archaea can be used as indicators characterizing the impact of external disturbances on the soil environment, providing a theoretical foundation for the effective utilization of soil microbial resources, thereby achieving the goal of environmental protection and health promotion.


Assuntos
Ecossistema , Áreas Alagadas , Plantas Tolerantes a Sal , RNA Ribossômico 16S , Archaea/genética , Poaceae , Solo , Fungos/genética
3.
Environ Microbiol Rep ; 16(2): e13258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38589217

RESUMO

DNA methylation serves a variety of functions across all life domains. In this study, we investigated archaeal methylomics within a tripartite xylanolytic halophilic consortium. This consortium includes Haloferax lucertense SVX82, Halorhabdus sp. SVX81, and an ectosymbiotic Candidatus Nanohalococcus occultus SVXNc, a nano-sized archaeon from the DPANN superphylum. We utilized PacBio SMRT and Illumina cDNA sequencing to analyse samples from consortia of different compositions for methylomics and transcriptomics. Endogenous cTAG methylation, typical of Haloferax, was accompanied in this strain by methylation at four other motifs, including GDGcHC methylation, which is specific to the ectosymbiont. Our analysis of the distribution of methylated and unmethylated motifs suggests that autochthonous cTAG methylation may influence gene regulation. The frequency of GRAGAaG methylation increased in highly expressed genes, while CcTTG and GTCGaGG methylation could be linked to restriction-modification (RM) activity. Generally, the RM activity might have been reduced during the evolution of this archaeon to balance the protection of cells from intruders, the reduction of DNA damage due to self-restriction in stressful environments, and the benefits of DNA exchange under extreme conditions. Our methylomics, transcriptomics and complementary electron cryotomography (cryo-ET) data suggest that the nanohaloarchaeon exports its methyltransferase to methylate the Haloferax genome, unveiling a new aspect of the interaction between the symbiont and its host.


Assuntos
Archaea , Metilação de DNA , Archaea/genética , Perfilação da Expressão Gênica , Expressão Gênica , Metiltransferases/genética , DNA Arqueal/genética
4.
PLoS One ; 19(4): e0301871, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593165

RESUMO

Genome sequencing has revealed an incredible diversity of bacteria and archaea, but there are no fast and convenient tools for browsing across these genomes. It is cumbersome to view the prevalence of homologs for a protein of interest, or the gene neighborhoods of those homologs, across the diversity of the prokaryotes. We developed a web-based tool, fast.genomics, that uses two strategies to support fast browsing across the diversity of prokaryotes. First, the database of genomes is split up. The main database contains one representative from each of the 6,377 genera that have a high-quality genome, and additional databases for each taxonomic order contain up to 10 representatives of each species. Second, homologs of proteins of interest are identified quickly by using accelerated searches, usually in a few seconds. Once homologs are identified, fast.genomics can quickly show their prevalence across taxa, view their neighboring genes, or compare the prevalence of two different proteins. Fast.genomics is available at https://fast.genomics.lbl.gov.


Assuntos
Archaea , Bactérias , Archaea/genética , Bactérias/genética , Genômica , Proteínas/genética , Mapeamento Cromossômico
5.
Microbiome ; 12(1): 68, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570877

RESUMO

BACKGROUND: The trophic strategy is one key principle to categorize microbial lifestyles, by broadly classifying microorganisms based on the combination of their preferred carbon sources, electron sources, and electron sinks. Recently, a novel trophic strategy, i.e., chemoorganoautotrophy-the utilization of organic carbon as energy source but inorganic carbon as sole carbon source-has been specifically proposed for anaerobic methane oxidizing archaea (ANME-1) and Bathyarchaeota subgroup 8 (Bathy-8). RESULTS: To further explore chemoorganoautotrophy, we employed stable isotope probing (SIP) of nucleic acids (rRNA or DNA) using unlabeled organic carbon and 13C-labeled dissolved inorganic carbon (DIC), i.e., inverse stable isotope labeling, in combination with metagenomics. We found that ANME-1 archaea actively incorporated 13C-DIC into RNA in the presence of methane and lepidocrocite when sulfate was absent, but assimilated organic carbon when cellulose was added to incubations without methane additions. Bathy-8 archaea assimilated 13C-DIC when lignin was amended; however, their DNA was derived from both inorganic and organic carbon sources rather than from inorganic carbon alone. Based on SIP results and supported by metagenomics, carbon transfer between catabolic and anabolic branches of metabolism is possible in these archaeal groups, indicating their anabolic versatility. CONCLUSION: We provide evidence for the incorporation of the mixed organic and inorganic carbon by ANME-1 and Bathy-8 archaea in the environment. Video Abstract.


Assuntos
Archaea , Metano , Archaea/genética , Marcação por Isótopo , Oxirredução , Metano/metabolismo , Carbono/metabolismo , DNA , Anaerobiose , Sedimentos Geológicos , Filogenia
6.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38620144

RESUMO

In this perspective, we explore the transformative impact and inherent limitations of metagenomics and single-cell genomics on our understanding of microbial diversity and their integration into the Tree of Life. We delve into the key challenges associated with incorporating new microbial lineages into the Tree of Life through advanced phylogenomic approaches. Additionally, we shed light on enduring debates surrounding various aspects of the microbial Tree of Life, focusing on recent advances in some of its deepest nodes, such as the roots of bacteria, archaea, and eukaryotes. We also bring forth current limitations in genome recovery and phylogenomic methodology, as well as new avenues of research to uncover additional key microbial lineages and resolve the shape of the Tree of Life.


Assuntos
Archaea , Bactérias , Archaea/genética , Bactérias/genética , Genômica , Metagenômica/métodos , Filogenia
7.
PLoS One ; 19(4): e0299518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603769

RESUMO

Wastewater irrigation is a common practice for agricultural systems in arid and semiarid zones, which can help to overcome water scarcity and contribute with nutrient inputs. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are key in the transformation of NH4+-N in soil and can be affected by variations in soil pH, EC, N and C content, or accumulation of pollutants, derived from wastewater irrigation. The objective of this study was to determine the changes in the ammonia oxidizing communities in agricultural soils irrigated with wastewater for different periods of time (25, 50, and 100 years), and in rainfed soils (never irrigated). The amoA gene encoding for the catalytic subunit of the ammonia monooxygenase was used as molecular reporter; it was quantified by qPCR and sequenced by high throughput sequencing, and changes in the community composition were associated with the soil physicochemical characteristics. Soils irrigated with wastewater showed up to five times more the abundance of ammonia oxidizers (based on 16S rRNA gene relative abundance and amoA gene copies) than those under rainfed agriculture. While the amoA-AOA: amoA-AOB ratio decreased from 9.8 in rainfed soils to 1.6 in soils irrigated for 100 years, indicating a favoring environment for AOB rather than AOA. Further, the community structure of both AOA and AOB changed during wastewater irrigation compared to rainfed soils, mainly due to the abundance variation of certain phylotypes. Finally, the significant correlation between soil pH and the ammonia oxidizing community structure was confirmed, mainly for AOB; being the main environmental driver of the ammonia oxidizer community. Also, a calculated toxicity index based on metals concentrations showed a correlation with AOB communities, while the content of carbon and nitrogen was more associated with AOA communities. The results indicate that wastewater irrigation influence ammonia oxidizers communities, manly by the changes in the physicochemical environment.


Assuntos
Amônia , Solo , Solo/química , Amônia/química , Águas Residuárias , RNA Ribossômico 16S , Archaea/genética , Oxirredução , Microbiologia do Solo , Filogenia , Nitrificação
8.
Front Cell Infect Microbiol ; 14: 1291557, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524179

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and CRISPR-associated (Cas) proteins serve as an adaptive immune system that safeguards prokaryotes and some of the viruses that infect prokaryotes from foreign nucleic acids (such as viruses and plasmids). The genomes of the majority of archaea and about half of all bacteria contain various CRISPR-Cas systems. CRISPR-Cas systems depend on CRISPR RNAs (crRNAs). They act as a navigation system to specifically cut and destroy foreign nucleic acids by recognizing invading foreign nucleic acids and binding Cas proteins. In this review, we provide a brief overview of the evolution and classification of the CRISPR-Cas system, focusing on the functions and applications of the CRISPR-Cas13a system. We describe the CRISPR-Cas13a system and discuss its RNA-directed ribonuclease function. Meanwhile, we briefly introduce the mechanism of action of the CRISPR-Cas13a system and summarize the applications of the CRISPR-Cas13a system in pathogen detection, eukaryotes, agriculture, biosensors, and human gene therapy. We are right understanding of CRISPR-Cas13a has been broadened, and the CRISPR-Cas13a system will be useful for developing new RNA targeting tools. Therefore, understanding the basic details of the structure, function, and biological characterization of CRISPR-Cas13a effector proteins is critical for optimizing RNA targeting tools.


Assuntos
Bactérias , Vírus , Humanos , Archaea/genética , RNA , Sistemas CRISPR-Cas , Vírus/genética
9.
Sci Total Environ ; 926: 171936, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527554

RESUMO

There is limited understanding regarding the changes in the ecological processes and the mechanisms of archaeal community in response to heavy metal contamination in the marine sediments. In this study, sediment samples were collected from 46 locations near harbors, and the concentration of heavy metals and the diversity of archaeal communities were investigated to understand the impact of Cd on archaeal communities. The results demonstrated a significant correlation between the diversity of archaeal community and Cd concentration, particularly showing a linear decrease in the species richness with rising Cd concentration. ANME-1b was identified as a significantly enriched archaeal taxon in the higher Cd environment. Null model and neutral community model indicated that the ecological assembly of archaeal communities in marine sediments was primarily governed by the stochastic processes, with dispersal limitation being the primary factor. The contribution of deterministic process to the assembly of archaeal communities in higher Cd environments increased clearly, accompanied by a notable reduction in species migration rates and widths of ecological niche of archaeal populations. Co-occurrence network analysis revealed an obvious increase in species interactions in higher Cd environments, with an apparent rise in the proportion of competitive relationships and an increase in the number of keystone species. Moreover, archaeal species formed a more complex and stable community to cope with Cd stress. This study provides new insights into the impacts of heavy metals on the ecological processes of marine microorganisms and the underlying mechanisms.


Assuntos
Archaea , Metais Pesados , Archaea/genética , Cádmio/análise , Sedimentos Geológicos , RNA Ribossômico 16S/análise , Metais Pesados/análise
10.
Hist Philos Life Sci ; 46(2): 16, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530473

RESUMO

Observational and experimental discoveries of new factual entities such as objects, systems, or processes, are major contributors to some advances in the life sciences. Yet, whereas discovery of theories was extensively deliberated by philosophers of science, very little philosophical attention was paid to the discovery of factual entities. This paper examines historical and philosophical aspects of the experimental discovery by Carl Woese of archaea, prokaryotes that comprise one of the three principal domains of the phylogenetic tree. Borrowing Kuhn's terminology, this discovery of a major biological entity was made during a 'normal science' project of building molecular taxonomy for prokaryotes. Unexpectedly, however, an observed anomaly instigated the discovery of archaea. Substantiation of the existence of the new archaeal entity and consequent reconstruction of the phylogenetic tree prompted replacement of a long-held model of a prokarya and eukarya bipartite tree of life by a new model of a tripartite tree comprising of bacteria, archaea, and eukarya. This paper explores the history and philosophical implications of the progression of Woese's project from normal science to anomaly-instigated model-changing discovery. It is also shown that the consequential discoveries of RNA splicing and of ribozymes were similarly prompted by unexpected irregularities during normal science activities. It is thus submitted that some discoveries of factual biological entities are triggered by unforeseen observational or experimental anomalies.


Assuntos
Archaea , Disciplinas das Ciências Biológicas , Filogenia , Archaea/genética , Evolução Biológica
11.
Genes (Basel) ; 15(3)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38540387

RESUMO

Prokaryotic genomes are dynamic tapestries that are strongly influenced by mobile genetic elements (MGEs), including transposons (Tn's), plasmids, and bacteriophages. Of these, miniature inverted-repeat transposable elements (MITEs) are undoubtedly the least studied MGEs in bacteria and archaea. This review explores the diversity and distribution of MITEs in prokaryotes and describes what is known about their functional roles in the host and involvement in genomic plasticity and evolution.


Assuntos
Elementos de DNA Transponíveis , Genômica , Elementos de DNA Transponíveis/genética , Células Procarióticas , Bactérias/genética , Archaea/genética
12.
Bioresour Technol ; 399: 130637, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548031

RESUMO

The discovery of Comammox bacteria (CMX) has changed our traditional concept towards nitrification, yet its role in constructed wetlands (CWs) remains unclear. This study investigated the contributions of CMX and two canonical ammonia-oxidizing microorganisms, ammonia-oxidizing bacteria (AOB) and archaea to nitrification in four regions (sediment, shoreside, adjacent soil, and water) of a typical CW using DNA-based stable isotope probing. The results revealed that CMX not only widely occurred in sediment and shoreside zones with high abundance (5.08 × 104 and 6.57 × 104 copies g-1 soil, respectively), but also actively participated in ammonia oxidation, achieving ammonia oxidation rates of 1.43 and 2.00 times that of AOB in sediment and shoreside, respectively. Phylogenetic analysis indicated that N. nitrosa was the dominant and active CMX species. These findings uncovered the crucial role of CMX in nitrification of sediment and shoreside, providing a new insight into nitrogen cycle of constructed wetlands.


Assuntos
Betaproteobacteria , Nitrificação , Amônia , Áreas Alagadas , Filogenia , Oxirredução , Microbiologia do Solo , Bactérias/genética , Archaea/genética , Solo , DNA
13.
Environ Microbiol ; 26(3): e16607, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477387

RESUMO

Subsurface microorganisms make up the majority of Earth's microbial biomass, but ecological processes governing surface communities may not explain community patterns at depth because of burial. Depth constrains dispersal and energy availability, and when combined with geographic isolation across landscapes, may influence community assembly. We sequenced the 16S rRNA gene of bacteria and archaea from 48 sediment cores across 36 lakes in four disconnected mountain ranges in Wyoming, USA and used null models to infer assembly processes across depth, spatial isolation, and varying environments. Although we expected strong dispersal limitations across these isolated settings, community composition was primarily shaped by environmental selection. Communities consistently shifted from domination by organisms that degrade organic matter at the surface to methanogenic, low-energy adapted taxa in deeper zones. Stochastic processes-like dispersal limitation-contributed to differences among lakes, but because these effects weakened with depth, selection processes ultimately governed subsurface microbial biogeography.


Assuntos
Lagos , Microbiota , Lagos/microbiologia , RNA Ribossômico 16S/genética , Archaea/genética , Bactérias/genética , Microbiota/genética
14.
Sci Rep ; 14(1): 6371, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493232

RESUMO

Marine sponges host diverse microbial communities. Although we know many of its ecological patterns, a deeper understanding of the polar sponge holobiont is still needed. We combine high-throughput sequencing of ribosomal genes, including the largest taxonomic repertoire of Antarctic sponge species analyzed to date, functional metagenomics, and metagenome-assembled genomes (MAGs). Our findings show that sponges harbor more exclusive bacterial and archaeal communities than seawater, while microbial eukaryotes are mostly shared. Furthermore, bacteria in Antarctic sponge holobionts establish more cooperative interactions than in sponge holobionts from other environments. The bacterial classes that established more positive relations were Bacteroidia, Gamma- and Alphaproteobacteria. Antarctic sponge microbiomes contain microbial guilds that encompass ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and sulfur-oxidizing bacteria. The retrieved MAGs showed a high level of novelty and streamlining signals and belong to the most abundant members of the main microbial guilds in the Antarctic sponge holobiont. Moreover, the genomes of these symbiotic bacteria contain highly abundant functions related to their adaptation to the cold environment, vitamin production, and symbiotic lifestyle, helping the holobiont survive in this extreme environment.


Assuntos
Microbiota , Poríferos , Animais , Poríferos/microbiologia , Regiões Antárticas , Amônia , Archaea/genética , Bactérias/genética , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética
15.
Environ Sci Technol ; 58(11): 4979-4988, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445630

RESUMO

Microbial methane oxidation has a significant impact on the methane flux from marine gas hydrate areas. However, the environmental fate of methane remains poorly constrained. We quantified the relative contributions of aerobic and anaerobic methanotrophs to methane consumption in sediments of the gas hydrate-bearing Sakata Knoll, Japan, by in situ geochemical and microbiological analyses coupled with 13C-tracer incubation experiments. The anaerobic ANME-1 and ANME-2 species contributed to the oxidation of 33.2 and 1.4% methane fluxes at 0-10 and 10-22 cm below the seafloor (bsf), respectively. Although the aerobic Methylococcaceae species consumed only 0.9% methane flux in the oxygen depleted 0.0-0.5 cmbsf zone, their metabolic activity was sustained down to 6 cmbsf (based on rRNA and lipid biosyntheses), increasing their contribution to 10.3%. Our study emphasizes that the co-occurrence of aerobic and anaerobic methanotrophy at the redox transition zone is an important determinant of methane flux.


Assuntos
Archaea , Sedimentos Geológicos , Archaea/genética , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Anaerobiose , Metano , RNA Ribossômico 16S/genética , Oxirredução , Filogenia
16.
Sci Rep ; 14(1): 6745, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509179

RESUMO

The Sansha Yongle Blue Hole (SYBH) is the world's deepest marine blue hole with unique physicochemical characteristics. However, our knowledge of the biodiversity and community structure in SYBH sediments remains limited, as past studies have mostly focused on microbial communities in the water column. Here, we collected sediment samples from the aerobic zone (3.1 to 38.6 m) and the deep anaerobic zone (150 m, 300 m) of the SYBH and extracted DNA to characterize the archaeal, bacterial, and eukaryotic communities inhabiting these sediments. Our results showed that the archaeal and bacterial communities were dominated by Thaumarchaeota and Proteobacteria, respectively. The dominant taxa of eukaryotes in different sites varied greatly, mainly including Phaeophyceae, Annelida, Diatomea and Arthropoda. All three examined domains showed clear vertical distributions and significant differences in community composition between the aerobic and anaerobic zones. Sulfide played a prominent role in structuring the three domains, followed by salinity, nitrous oxide, pH, temperature and dissolved oxygen, all of which were positively correlated with the turnover component, the main contributor to beta diversity. Neutral community model revealed that stochastic processes contributed to more than half of the community variations across the three domains. Co-occurrence network showed an equal number of positive and negative interactions in the archaeal network, while positive interactions accounted for ~ 80% in the bacterial and eukaryotic networks. Our findings reveal the ecological features of prokaryotes and eukaryotes in SYBH sediments and shed new light on community dynamics and survival strategies in the special environment of marine blue holes.


Assuntos
Archaea , Código de Barras de DNA Taxonômico , Archaea/genética , Sedimentos Geológicos/microbiologia , Bactérias/genética , DNA , DNA Arqueal/genética , DNA Arqueal/química , RNA Ribossômico 16S/genética , Filogenia
17.
Environ Microbiol ; 26(3): e16616, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517638

RESUMO

Nitrification is an important control on the form and distribution of nitrogen in freshwater ecosystems. However, the seasonality of nitrogen pools and the diversity of organisms catalyzing this process have not been well documented in oligotrophic lakes. Here, we show that nitrogen pools and nitrifying organisms in Flathead Lake are temporally and vertically dynamic, with nitrifiers displaying specific preferences depending on the season. While the ammonia-oxidizing bacteria (AOB) Nitrosomonadaceae and nitrite-oxidizing bacteria (NOB) Nitrotoga dominate at depth in the summer, the ammonia-oxidizing archaea (AOA) Nitrososphaerota and NOB Nitrospirota become abundant in the winter. Given clear seasonality in ammonium, with higher concentrations during the summer, we hypothesize that the succession between these two nitrifying groups may be due to nitrogen affinity, with AOB more competitive when ammonia concentrations are higher and AOA when they are lower. Nitrifiers in Flathead Lake share more than 99% average nucleotide identity with those reported in other North American lakes but are distinct from those in Europe and Asia, indicating a role for geographic isolation as a factor controlling speciation among nitrifiers. Our study shows there are seasonal shifts in nitrogen pools and nitrifying populations, highlighting the dynamic spatial and temporal nature of nitrogen cycling in freshwater ecosystems.


Assuntos
Lagos , Nitrosomonadaceae , Lagos/microbiologia , Estações do Ano , Ecossistema , Amônia , Oxirredução , Archaea/genética , Nitrificação , Nitritos , Nitrogênio , Dinâmica Populacional , Filogenia
18.
Sci Total Environ ; 923: 171479, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458444

RESUMO

The effects of five antibiotics (i.e., ampicillin, streptomycin, carbenicillin, kanamycin and tetracycline) on ammonia-oxidizing archaea (AOA) enrichment from anoxic activated sludge were investigated. The combined use of five antibiotics during 90-day cultivation could selectively inhibit nitrite-oxidizing bacteria (NOB) and ammonia-oxidizing bacteria (AOB) with AOA unaffected, as evidenced by the nitrite accumulation ratio of 100 % and the proportion of AOA in ammonia-oxidizing microbes over 91 %. The alternative use of five antibiotics was the optimal approach to screening for AOA during 348-day cultivation, which inhibited AOB growth at a level equivalent to the combined use of five antibiotics (the AOB-amoA gene decreased by over 99.90 %), further promoted AOA abundance (the much higher AOA-amoA to AOB-amoA gene copy number ratio (1453.30) than that in the groups with the combined use of five antibiotics (192.94)), eliminated bacterial adaptation to antibiotics and reduced antibiotic-resistant bacteria to form Nitrocosmicus-dominant community (42.35 % in abundance).


Assuntos
Amônia , Archaea , Archaea/genética , Antibacterianos , Nitritos , Oxirredução , Bactérias/genética , Filogenia , Microbiologia do Solo
19.
Environ Microbiol ; 26(3): e16601, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454574

RESUMO

Thaumarchaeota are predominant in oligotrophic habitats such as deserts and arid soils, but their adaptations to these arid conditions are not well understood. In this study, we assembled 23 Thaumarchaeota genomes from arid and semi-arid soils collected from the Inner Mongolia Steppe and the Qinghai-Tibet Plateau. Using a comparative genomics approach, integrated with 614 Thaumarchaeota genomes from public databases, we identified the traits and evolutionary forces that contribute to their adaptations to aridity. Our results showed that the newly assembled genomes represent an early diverging group within the lineage of ammonia-oxidising Thaumarchaeota. While the genomic functions previously identified in arid soil lineages were conserved across terrestrial, shallow-ocean and deep-ocean lineages, several traits likely contribute to Thaumarchaeota's adaptation to aridity. These include chlorite dismutase, arsenate reductase, V-type ATPase and genes dealing with oxidative stresses. The acquisition and loss of traits at the last common ancestor of arid soil lineages may have facilitated the specialisation of Thaumarchaeota in arid soils. Additionally, the acquisition of unique adaptive traits, such as a urea transporter, Ca2+ :H+ antiporter, mannosyl-3-phosphoglycerate synthase and phosphatase, DNA end-binding protein Ku and phage shock protein A, further distinguishes arid soil Thaumarchaeota. This study provides evidence for the adaptations of Thaumarchaeota to arid soil, enhancing our understanding of the nitrogen and carbon cycling driven by Thaumarchaeota in drylands.


Assuntos
Amônia , Solo , Filogenia , Amônia/metabolismo , Microbiologia do Solo , Oxirredução , Archaea/genética , Archaea/metabolismo , Genômica
20.
Bioresour Technol ; 399: 130605, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499200

RESUMO

The application of ammonia-oxidizing archaea (AOA)-based partial nitrification-anammox (PN-A) for mainstream wastewater treatment has attracted research interest because AOA can maintain higher activity in low-temperature environments and they have higher affinity for oxygen and ammonia-nitrogen compared with ammonia-oxidizing bacteria (AOB), thus facilitating stabilized nitrite production, deep removal of low-ammonia, and nitrite-oxidizing bacteria suppression. Moreover, the low affinity of AOA for ammonia makes them more tolerant to N-shock loading and more efficiently integrated with anaerobic ammonium oxidation (anammox). Based on the limitations of the AOB-based PN-A process, this review comprehensively summarizes the potential and significance of AOA for nitrite supply, then gives strategies and influencing factors for replacing AOB with AOA. Additionally, the methods and key influences on the coupling of AOA and anammox are explored. Finally, this review proposes four AOA-based oxygen- or ammonia-limited autotrophic nitritation/denitrification processes to address the low effluent quality and instability of mainstream PN-A processes.


Assuntos
Archaea , Nitrificação , Archaea/genética , Amônia , Nitritos , Oxidação Anaeróbia da Amônia , Águas Residuárias , Oxirredução , Nitrogênio/análise , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...